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A plane wave is incident on a simply supported elastic plate covering a back volume; the
arrangement is surrounded by a hard ba%e wall. The plate may be porous with a #ow
friction resistance; the back volume may be "lled either with air or with a porous material.
The back volume may be bulk reacting (i.e., with sound propagation parallel to the plate) or
locally reacting. Since this arrangement is of some importance in room acoustics, Cremer in
his book about room acoustics [1] has presented an approximate analysis. However,
Cremer's analysis uses a number of assumptions which make his solution, in his own
estimate, unsuited for low frequencies, where, on the other hand, the arrangement mainly is
applied. This paper presents a sound "eld description which uses modal analysis. It is
applicable not only in the far "eld, but also near the absorber. Further, approximate
solutions are derived, based on simplifying assumptions like Cremer has used. The modal
analysis solution is of interest not only as a reference for approximations but also for
practical applications, because the aspect of computing time becomes more and more
unimportant (the 3D-plots presented below for the sound "eld were evaluated with modal
analysis in about 6 s). ( 2001 Academic Press
1. INTRODUCTION AND PROBLEM

Consider the object depicted in Figure 1. A simply supported one-dimensional elastic plate
of thickness d and width ¸"2c is #ush with a hard ba%e wall. It covers a back volume with
depth t. The medium in the volume is supposed to have the characteristic propagation
constant C

a
and wave impedance Z

a
. If the medium is air without losses, C

a
"jk

0
; Z

a
"Z

0
with k

0
"u/c

0
; Z

0
"o

0
c
0
, o

0
, c

0
being the density and sound speed of air. If the depth t of

the volume is small, it is advisable to use for C
a
, Z

a
the characteristic values of a #at

capillary. If the volume is "lled with a porous material (not in tight mechanical contact with
the plate) C

a
, Z

a
are the characteristic values of that material. The plate will be characterized

in the present analysis by its partition impedance Z
T
"Dp/<. The model of the

one-dimensional plate agrees well with absorbers of this type applied in room acoustics
where mostly long panels are used (i.e., one lateral dimension large compared to the other).
The assumption of simple support of the panel borders also agrees best with the technical
"xations among the classical supports (clamped, supported, free).

A plane wave p
e
is incident normal to the z-axis with a polar angle H. The sound "eld in

front of the absorber is composed as (the time factor e+ut is dropped)

p(x, y)"p
e
(x, y)#p

r
(x, y)#p

s
(x, y),

p
e
(x, y)"P

e
) e~+kxx ) e~+kyy,

p
r
(x, y)"P

e
) e~+kxx ) e`+kyy,

k
x
"k

0
sinH, k

y
"k

0
cos H (1)

where p
r
is the incident wave after re#ection at a hard plane in y"0, and p

s
is a scattered

wave. The sum p
e
#p

r
satis"es the boundary condition at the ba%e wall, and has a zero
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Figure 1. The object considered.
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normal particle velocity at the plate also. Thus the normal particle velocity v
sy

(x, 0) of the
scattered wave must agree with the plate velocity distribution <(x) in the x range of the
plate and must be zero outside that range.

Cremer [1] tried to solve the problem without detailed knowledge of p
s
. In fact, it

would be su$cient to know the plate velocity distribution <(x), because with that the
far"eld angular distribution of p

s
could be evaluated, see reference [2], and with this, the

absorbed power could be computed. But the velocity distribution <(x) in turn depends on p
s
.

Cremer tried to circumvent the problem of determination of p
s
by some heuristic assumptions,

and also gives only approximations for the sound "eld p
a

in the volume. These
approximations, in his own opinion, exclude the application of his solution at low frequencies.

In another approximation it would be su$cient to know the surface impedance Z(x) of
the plate surface; see reference [3]. This would be possible if the back volume would be
locally reacting, e.g., by thin partitions in the volume or by a porous material "lling with
high #ow resistivity. This assumption, however, would exclude the e!ects of a horizontal
&&pumping'' of air in the volume by plate velocity pro"les <(x).

In order to avoid the suppression of possibly interesting e!ects by improper initial
assumptions, a full "eld analysis will be performed below. The analysis of the present task is
similar to the solution of the task of sound transmission through a simply supported plate in
a ba%e wall, which was described by Mechel [4]. Whereas the plate is loaded on its back
side with p

s
(x) in the sound transmission problem, it is loaded here with the sound pressure

p
a
(x) in the volume.
The next section will give the formulations for the component "elds p

e
#p

r
, p

s
, p

a
, < (x);

the "rst two of these are formulated as sums of Mathieu functions; the sum coe$cients for
p
e
#p

r
are explicitly known; the term factors for p

s
must be determined from the boundary

conditions. The volume "eld p
a

is formulated as a sum of volume modes with unknown
mode amplitudes; they also must be determined from the boundary conditions. Finally, the
plate velocity pro"le < (x) is formulated as the sum of modes of a simply supported (one
dimensional) plate.

2. FORMULATIONS OF THE COMPONENT FIELDS

One begins with the formulation of <(x), or <(m) with m"x/c:

<(m)" +
n*1

<
n
) v

n
(m),

v
n
(m)"G

cos (nnm/2)"cos (c
n
m), n " 1, 3, 5,2

sin (nnm/2)"sin (c
n
m), n"2, 4, 6,2 H , c

n
"nn/2. (2)
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The plate modes v
n
(m) are orthogonal to each other in !1)m)#1 with the norms

N
pn
"P

1

~1

v2
n
(m) dm"1. (3)

Next, one formulates p
a
. The wave and the momentum equations in the back volume

have the forms

(D!C2
a
) p

a
"0, v

a
"

!1

C
a
Z

a

grad p
a
. (4)

The formulation of p
a
as a sum of volume modes,

p
a
(x, y)" +

k*0

a
k
) p

ak
(x) ) cos (i

k
(y!t)), (5)

i
k
c"j J(C

a
c)2#c2

k
, (6)

p
ak

(m)"G
cos (knm/2)"cos (c

k
m), k"0, 2, 4,2

sin (knm/2)"sin (c
k
m), k"1, 3, 5,2H , c

k
"kn/2, (7)

satis"es the boundary conditions at the (hard) walls of the back volume. The volume modes
are also orthogonal to each other in !1)m)#1 with the norms

N
ak
"P

1

~1

p2
ak

(m) dm"G
2, k"0

1, k'0H . (8)

The feature of p
s
(x, 0)"p

s
(x) having a "nite normal particle velocity v

sy
(x, 0) in

!c)x)#c, and zero normal velocity outside, suggests the use of elliptic}hyperbolic
cylinder co-ordinates (o,0 ) for the formulation of that component "eld; see Figure 2.
Figure 2. The absorber embedded in elliptic-hyperbolic co-ordinates.
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These co-ordinates follow from the Cartesian co-ordinates (x, y) by the transformation
x"c ) cosh o ) cos 0, y"c ) sinh o ) sin 0. x"$c are the positions of the common foci of
the ellipses and hyperbolic branches. At o"0, m"x/c"cos 0.

The relations between vector components in elliptic}hyperbolic and Cartesian
co-ordinates are (on the side shown in Figure 2)

vo"v
x

sinh o ) cos 0

Jsinh2 o#sin2 0
#v

y

cosh o ) sin 0

Jsinh2 o#sin2 0
&&"

o?0
!v

y
,

v0"!v
x

cosh o ) sin 0

Jsinh2 o#sin2 0
#v

y

sinh o ) cos 0

Jsinh2 o#sin2 0
&&"

o?0
v
x
. (9a)

The gradient of a scalar function p (o,0 ) has the form

grad p"
1

cJcosh2 o!cos2 0 C
Lp

Lo
no#

Lp

L0
n0D &&"

o?0

1

c sin 0 C
Lp

Lo
no#

Lp

L0
n0D . (9b)

The wave equation in these co-ordinates is

L2p
Lo2

#

L2p
L02

#(k
0
c)2(cosh2 o!cos2 0 ) ) p(o, 0 )"0. (9c)

It separates for p (o, 0 )"; (0 ) )= (o) into the two Mathieu di!erential equations (z is
a general variable),

d2; (z)

dz2
#(b!4q cos2 z);(z)"0,

d2=(z)

dz2
!(b!4q cosh2 z)=(z)"0, (10)

with q"(k
0
c)2/4 and b a separation constant. Solutions are the Mathieu functions (see

references [4, 5] for these functions). A formulation of p
s
which has the mentioned features

for each term is

p
s
(o, 0 )"4

=
+

m/0

D
m
(!j)m ce

.
(a) )Hc(2)

.
(o) ) ce

.
(0 ),

a"n/2!H, q"(k
0
c)2/4. (11)

The ce
.
(0) are &&azimuthal Mathieu functions'' which are even in 0 at 0"0, and the

Hc(2)
.

(o)"Jc
.
(o)!j )Yc

.
(o) are associated &&radial Mathieu functions'', or &&Mathieu}

Hankel functions'' of the second kind, which represent outward propagating waves and
satisfy Sommerfeld's far"eld condition. They are composed by the &&Mathieu}Bessel''
function Jc

.
(o) and the &&Mathieu}Neumann'' function Yc

.
(o) like the cylindrical Hankel

function of the second kind. The Mathieu functions depend on the parameter q. The term
amplitudes D

m
are yet unknown. The azimuthal Mathieu functions are orthogonal to each

other in !n)0)0 with the norms

N
sm
"P

0

~n
ce2

.
(0 ) d0"P

n

0

ce2
.
(0 ) d0"

n
2

. (12)
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One can note for later use that ce
.
(0 ), Jc

.
(o), Yc

.
(o) are real functions, and Jc@

.
(0)"0,

Hc@(2)
.

(0)"!j )Yc@
.
(0) (where the primes indicate derivatives with respect to o). It will be

important that the ce
.
(0) are generated as a Fourier series

ce
.
(0 )"

`=
+
s/0

A
2s`p

) cos((2s#p)0 ), m"2r#p, G
r"0, 1, 2,2
p"0, 1 H , (13)

so the real Fourier coe$cients A
2s`p

are delivered by the computing program which
generates the Mathieu function.

The sum p
e
#p

r
can be expanded in Mathieu functions ce

.
(0 ), Jc

.
(o):

p
e
(o, 0 )#p

r
(o, 0 )"4P

e

=
+

m/0

(!j)mce
.
(a) ) Jc

.
(o) ) ce

.
(0 ) (14)

(formulation (11) for p
s
has inherited a formal similarity from this expansion).

With these formulations, the boundary conditions at the ba%e wall and the walls of the
back volume are satis"ed, as well as Sommerfeld's condition. The formulations use
functions which are orthogonal in !1)m)#1. One is left with three sets of unknown
amplitudes <

n
, a

n
, D

m
and one still has three boundary conditions for their determination.

3. BOUNDARY CONDITIONS

The plate is supposed to be airtight. The boundary conditions at y"0 and
!c)x)#c, or !1)m)#1, are

v
sy

(m)"<(m), v
ay

(m)"<(m), p
e
(m)#p

r
(m)#p

s
(m)!p

a
(m)"Z

T
)<(m). (15)

The "rst condition follows from the fact that p
e
#p

r
produce no normal particle velocity in

the plane y"0. The second condition is evident if one neglects the thickness d of the plate
(more precisely, a new, shifted co-ordinate y@"y#d could be de"ned in the back volume;
the result would be the same). The right-hand side of the third condition still is &&symbolic''.
It uses the partition impedance Z

T
of the plate which is de"ned by Z

T
"(p

front
!p

back
)/<.

The partition impedance, however, is de"ned only either for in"nite, homogeneous plates or
for "nite plates if the driving pressure (p

front
!p

back
) has the pro"le of a plate mode. Then,

Z
T

represents the &&modal partition impedance'' Z
Tn

.
In the present case of a simply supported plate, possibly with a loss factor g of the plate

bending, the modal partition impedance is

Z
Tn

Z
0

"2nZ
m
F CgF2A

c
n

k
0
cB

4
#j A1!F2A

c
n

k
0
cB

4

BD , F"

f

f
cr

, Z
m
"

f
cr
d

Z
0

o
p
, (16a)

with, respectively, o
p
, f

cr
the plate material density and the critical frequency of the plate

(note that f
cr
d for thin plates is a material constant as well). Z

Tn
immediately follows from

the inhomogeneous bending wave equation. The case of an in"nitely extended plate will be
considered below for comparison; in that case the partition impedance Z

T
is given by

Z
T

Z
0

"2nZ
m
F[gF2 sin4 H#j (1!F2 sin4 H)]. (16b)

In order to give the third boundary condition a precise form, the "elds on both sides are
expanded in plate modes v

n
(m), and, with Z

T
PZ

Tn
, it is required that the condition holds
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term-wise. An intermediate form of the boundary condition is

p
e
(m)#p

r
(m)#p

s
(m)!p

a
(m)" +

n*1

<
n
Z

Tn
) v

n
(m). (17)

With the expansion of the left-hand side in modes v
n
(m) one encounters the weak point of the

present analysis. The sum over v
n
(m) with even n from equation (2) is a complete Fourier sine

series for the anti-symmetrical part (in m) of the "eld; however the plate modes with odd
n are not a complete set of orthogonal symmetrical functions because the constant function
is missing. Therefore, an expansion of p

e
#p

r
#p

s
and of p

a
in plate modes will create an

unavoidable error at m"$1, because both p
s
and p

a
will have relative maxima in these

points. The following reasons suggest that it is worthwhile to proceed with the analysis,
nevertheless. First, the range of the error near m"$1 can be made arbitrarily small with
su$ciently high values of n; second, the errors in p

e
#p

r
#p

s
and of p

a
have the tendency to

compensate each other; third, with a more acoustical reasoning, the errors D (p
e
#p

r
#p

s
)

and D (p
a
) can be considered as additional "elds which are restricted to a range near the

support line of the plate, and there they will have only a minor in#uence on<(m) because the
plate is at rest in these points anyhow. These considerations show, that the expansion in
v
n
(m) should only be used for boundary condition (17).
One can de"ne the coupling coe$cients

Q
m,n

:"P
`1

~1

ce
.
(arccos m) ) v

n
(m) dm"P

n

0

sin 0 ) ce
.
(0 ) ) v

n
(cos 0 ) d0, (18a)

P
m,k

:"P
`1

~1

ce
.
(arccos m) ) p

ak
(m) dm"P

n

0

sin 0 ) ce
.
(0 ) )p

ak
(cos 0 ) d0, (18b)

S
k,n

:"P
`1

~1

p
ak

(m) ) v
n
(m) dm. (19)

Application on both sides of equation (17) of the integral

P
`1

~1

2 ) v
n
(m) dm, n*1,

gives

N
pn

Z
Tn

Z
0

)Z
0
<
n

"4 +
m*0

(!j)mce
.
(a) )Q

m,n
) [P

e
Jc

.
(0)#D

m
Hc(2)

.
(0)]! +

k*0

a
k
)S

k,n
) cos (i

k
t). (20)

Next consider the boundary condition v
sy

(m)"<(m) with

v
sy

(o"0, 0)"
4

k
0
c Z

0
sin 0

+
m*0

D
m
(!j)m`1 ce

.
(a) )Hc@(2)

.
(0) ) ce

.
(0 ) (21)

(the prime indicates the derivative with respect to the argument o) and apply on both sides
of v

sy
(m)"< (m) the integral

P
n

0

2 ) sin 0 ) ce
.
(0 ) d0,
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with the result:

4

k
0
c

(!j)m`1 )N
sm
) ce

.
(a) )Hc@(2)

.
(0) )D

m
" +

n*1

Z
0
<
n
)Q

m,n
, m*0. (22)

Finally, consider the boundary condition v
ay

(m)"< (m) with

v
ay

(m, y"0)"
!1

C
a
Z

a

+
k*0

a
k
i
k
) p

ak
(m) ) sin (i

k
t) (23)

and apply on both sides of the boundary condition the integral

P
`1

~1

2 ) p
ak

(m) dm,

with the result

a
k
"

!C
a
Z

a
i
k
)N

ak
) sin(i

k
t)

+
n*1

<
n
) S

k,n
, k*0. (24)

Insertion of D
m

from equation (22) and a
k
from equation (24) into equation (20) leads to

the linear, inhomogeneous system of equations for the amplitudes <
n
(v"1, 2, 3,2):

+
n*1

Z
0
<
n
)Gdn.vNpv

!

k
0
cZ

0
Z

Tv
C
2j

n
+

m*0

Hc(2)
.

(0)

Hc@(2)
.

(0)
)Q

m,v
Q

m,n
#

C
a
Z

a
k
0
Z

0

+
k*0

S
k,v

) S
k,n

/N
ak

i
k
c ) tan (i

k
t)DH

"4P
e

Z
0

Z
Tv

+
m*0

(!j)mce
.
(a) )Q

m,v
) Jc

.
(0), (25)

with the Kronecker symbol d
n,v

. After its solution, the amplitudes D
m
, a

k
follow from

equations (22) and (24) respectively. It still remains to evaluate the coupling coe$cients S
k,n

,
Q

m,n
for the computation of the component "elds. A question is, whether the system of

equations, which is in"nite in principle, converges, so that it can be truncated. A su$cient
criterion for convergence is the decrease or about constant magnitude of the main diagonal
elements of the matrix with increasing v, further, a decrease of the matrix elements with
increasing distance from the main diagonal, and "nally a decrease of the right-hand side
with increasing v. The "rst and last requirements are satis"ed, because Z

Tv
/Z

0
, according to

equation (16), increases as about v4. The products of the coupling coe$cients in the sum of
the matrix coe$cients decrease su$ciently with increasing k, m, n to satisfy the second
requirement (cot(i

k
t )/(i

k
c) decreases as about 1/k for large k, and also the ratio of the

Mathieu}Hankel function to its derivative at o"0 decreases with increasing m).

4. COUPLING COEFFICIENTS

The coupling coe$cients S
k,n

,

S
k,n

:"P
`1

~1

p
ak

(m) ) v
n
(m) dm,
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p
ak

(m)"G
cos (knm/2)"cos (c

k
m), k"0, 2, 4,2

sin (knm/2)"sin (c
k
m), k"1, 3, 5,

2
H c

k
"kn/2,

v
n
(m)"G

cos (nnm/2)"cos (c
n
m), n"1, 3, 5,

2

sin (nnm/2)"sin (c
n
m), n"2, 4, 6,

2
H, c

n
"nn/2, (26)

are easily obtained. When indicating with a subscript e even numbers, and with a subscript
o odd numbers, one gets

S
k,n

"G
0, k

e
& n

e

0, k
o

& n
o

2

n A
(!1)(ko~ne~1)@2

k
o
!n

e

#

(!1)(ko`ne~1)@2

k
o
#n

e
B , k

o
& n

e

2

n A
(!1)(ke~no~1)@2

k
e
!n

o

!

(!1)(ke`no~1)@2

k
e
#n

o
B , k

e
& n

o
H . (27)

For the evaluation of the coupling coe$cients Q
m,n

one uses the Fourier series
representation of the ce

.
(0 ) (see equation (13)):

Q
m,n

:"P
`1

~1

ce
.
(arccos m) ) v

n
(m) dm"P

n

0

sin 0 ) ce
.
(0) ) v

n
(cos 0) d0,

v
n
(m)"G

cos (nnm/2)"cos(c
n
m), n"1, 3, 5,2

sin (nnm/2)"sin (c
n
m), n"2, 4, 6,2 H , c

n
"nn/2,

ce
.
(0 )"

`=
+
s/0

A
2s`p

) cos ((2s#p)0 ), m"2r#p, G
r"0, 1, 2,2
p"0, 1 H . (28)

It follows from the fact that ce
.
(0 ) is symmetrical in 0 relative to 0"p/2 if m is even, and

odd if m is odd, that Q
m,n

has a non-zero value only for m
e
& n

o
and m

o
& n

e
(like the S

k,n
).

One uses the second form for Q
m,n

and writes

Q
m,n

" +
s*0

A
2s`p

) P
`1

~1

sin0 ) (cos ((2s#p)0 ) )G
cos (c

n
cos 0 ), n"odd

sin (c
n
cos 0 ), n"evenH d0

" +
s*0

A
2s`p

) I
s,n

(29)

In I
s,n

one expands for m"2r, even, i.e. p"0 (see reference [6, equation 1.332.3]).

sin 0 cos (2s0 )"sin 0#(1!d
0,s

)
s
+
i/1

(!1)i

(2i) !
) sin2i`1 0

i~1
<
k/0

(4s2!4k2), (30)

with the integrals (see reference [6, equation 3.715.21])

P
n

0

sin2i`1 0 cos (c
n
cos 0 ) d0"S

2n
c
n
A

2

c
n
B
i
i! ) J

i`1@2
(c

n
) (31)
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leading to

Q
2r,n

"S
2n
c
n

+
s*0

A
2sCJ1@2(c

n
)#(1!d

0,s
)

s
+
i/1

(!1)i
i!

(2i) ! A
2

c
n
B
i
) J

i`1@2
(c

n
)
i~1
<
k/0

(4s2!4k2)D .

(32)

For m"2r#1, odd, i.e., p"1, one expands (see reference [6, equation 1.331.1])

sin 0 cos ((2s#1)0 )

"sin 0 cos 0 C1#(1!d
0,s

)
s
+
i/1

(!1)i

(2i)!

i
<
k/1

((2s#1)2!(2k!1)2) ) sin2i 0D (33)

with the integrals (see Reference [6, equation 3.771.10]).

P
n

0

sin 0 cos 0 sin2i 0 sin (c
n
cos 0 ) d0"P

`1

~1

m (1!m2)i sin(c
n
m) dm, (34)

and gets

Q
2r`1,n

"S
2n
c
n

+
s*0

A
2s`1

]CJ3@2(c
n
)#(1!d

0,s
)

s
+
i/1

(!1)i
i!

(2i) !

i
<
k/1

((2s#1)2!(2k!1)2) A
2

c
n
B
i
) J

i`3@2
(c

n
)D .

(35)

The Bessel functions J
k`1@2

(z) with half integer order can be evaluated from two starting
values at high order with the known downward recursion for Bessel functions.

The coupling coe$cients P
m,k

de"ned in equation (18b) must not be evaluated separately
if one takes into account p

ak
(m)"v

k`1
(m); thus P

m,k
"Q

m,k`1
.

An important question for the computing time is that for the upper limit m
hi

of the order
m of the Mathieu functions. From the pattern of ce

.
(0 ) one can conclude that for a grazing

wave with a number of 2c/(j
0
/2) pressure nodes along the plate, the order m+2c/(j

0
/2)"

2k
0
c/n will be the order with maximum contribution. So, one will set m

hi
"

Int(2k
0
c/n)#Dm, with Int(x) the integer part of x and an increment Dm (+2 to 4). The upper

limit n
hi

for the plate modes can be set to the same value n
hi
"m

hi
(or somewhat higher).

5. SOUND ABSORPTION COEFFICIENT

The incident e!ective sound power (per unit length in the z direction) on the plate is

P
e
"

c ) cos H

Z
0

DP
e
D2. (36)

The absorbed power (also per unit length) is (a star indicates the complex conjugate)

P
a
"

c

2
ReGP

`1

~1

(p
e
#p

r
#p

s
) ) vH

sy
dmH . (37)
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After insertion of

p
e
#p

r
#p

s
"4 +

m*0

(!j)mce
.
(a) [P

e
) Jc

.
(0)#D

m
)Hc(2)

.
(0)] ) ce

.
(0 ) (38)

and v
sy

from equation (21), integrals of the type

P
`1

~1

ce
.
(0 ) ) cel(0 )

sin 0
dm &&"

m/#04 0 P
n

0

ce
.
(0 ) ) cel(0 ) d0"d

.,l
N

sm
(39)

will appear. With N
sm
"n/2 and real ce

.
(a), Jc

.
(0), Yc

.
(0) and Hc@(2)

.
(0)"!j Yc@

.
(0)) one

gets

P
a
"

!4cn
k
0
cZ

0

+
m*0

ce2
.
(a) )Yc@

.
(0) )ReM(P

e
) Jc

.
(0)#D

m
)Hc(2)

.
(0)) )DH

m
N. (40)

The coe$cients D
m

are obtained from equation (22).
The sound absorption coe$cient for oblique incidence "nally is a (H)"P

a
/P

e
. The

sound absorption coe$cient a
2~$*&

for two-dimensional di!use sound incidence is obtained
from

a
2-$*&

"P
n@2

0

a (H) ) cos H dH. (41)

If the surface impedance of the plate is not too low, this is a good approximation to the
absorption coe$cient for three-dimensional di!use incidence, also.

6. BACK VOLUME LOCALLY REACTING

Some simpli"cation is achieved if the back volume is supposed to be locally reacting,
either by thin partition walls at small distances ((j

0
/4) or with a porous "ll with su$ciently

high #ow resistivity N (N ) t/Z
0
'2). An input impedance Z

b
of the volume (at y"0) then

exists, p
a
(m)"Z

b
) v

ay
(m), which is valid for all pressure pro"les p

a
(m):

Z
b
"Z

a
) coth (C

a
t ). (42)

Boundary conditions (15) then become

p
e
(m)#p

r
(m)#p

s
(m)" +

n*1

<
n
(Z

Tn
#Z

b
) ) v

n
(m), v

sy
(m)" +

n*1

<
n
) v

n
(m). (43)

As in equations (38) and (39), the left-hand side of the "rst equation is expanded in plate
modes, and the second equation leads to the amplitudes D

m
of the scattered "eld terms, as in

equations (21) and (22). The system of equations for the plate mode amplitudes <
n
will be

(v"1, 2, 3,2):

+
n*1

Z
0
<
n
)Cdn,v!

2jk
0
c

n
Z

0
Z

Tv
#Z

b

+
m*0

Q
m,v

)Q
m,n

)
Hc(2)

.
(0)

Hc@(2)
.

(0)D
"4P

e

Z
0

Z
Tv
#Z

b

+
m*0

(!j)mce
.
(a) ) Jc

m
(0) )Q

m,v
. (44)
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The absorbed sound power again is taken from equation (40) with D
m

from
equation (22).

An alternative form for the absorbed sound power is obtained with equation (43):

P
a
"

c

2 P
`1

~1

ReG +
n*1

<
n
(Z

Tn
#Z

b
) ) v

n
(m) ) +

n*1

<H
n
) v

n
(m)H dm

"

c

2Z
0

+
n*1

N
pn

ReG
Z

Tn
#Z

b
Z

0
H ) DZ0

<
n
D2, (45a)

a (H)"
1

2 sin a
+

n*1

ReG
Z

Tn
#Z

b
Z

0
H ) DZ0

<
n
/P

e
D2. (45b)

It is just the sum (with N
pn
"1 for a simply supported plate) of the modal powers which

the plate mode with amplitude <
n
feeds into the impedance Z

Tn
#Z

b
.

Possibly, it was this simple relation which stimulated Cremer to evaluate the plate mode
amplitudes <

n
without explicit knowledge of the scattered "eld p

s
. The fundamental &&trick''

in such approximations consists in the subdivision of the boundary value problem into two
sub-tasks, and to make simplifying assumptions in the "rst sub-task. The next section will
describe a similar method which, however, needs fewer assumptions than Cremer's solution.

7. APPROXIMATE SOLUTIONS

The main contribution to the needed numerical work in the above solution of the task
comes from the evaluation of Mathieu functions for the scattered "eld p

s
. This is the

motivation to "nd a solution, even if it is only an approximation, without these functions.
The principal step in such approximations is the subdivision of the boundary value problem
into two sub-tasks. The "rst sub-task "nds the plate mode amplitudes with the assumption,
that p

s
(m) can be neglected compared to p

e
(m)#p

r
(m). This sum is supposed to be the driving

force for the plate motion. The assumption is plausible if the surface impedance of the plate
is not too small. The second step then evaluates the absorbed power with the amplitudes
<
n
found in the "rst step.
If the back volume is supposed to be bulk reacting (i.e., possible sound propagation

parallel to the plate) the boundary conditions in the mentioned approximation are

p
e
(m)#p

r
(m)!p

a
(m)"2P

e
) e~+kxcm!p

a
(m)" +

n*1

<
n
Z

Tn
) v

n
(m),

v
ay

(m)" +
n*1

<
n
) v

n
(m), (46)

where in the "rst equation, the left-hand side is supposed to be expanded in plate modes
v
n
(m). It should be noted that this equation describes the excitation of the plate by

a distributed force without radiation load on the side of excitation. Application on both
sides of that equation of the integral

P
`1

~1

2) v
v
(m) dm, v"1, 2, 3,2,
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yields with p
a
(m) from equation (5) and the coupling coe$cients S

k,n
from equation (26),

together with the new coupling coe$cients

R
n
:"P

`1

~1

e~+kxcm ) v
n
(m) dm"G

4nn (!1)n cos(k
x
c)

(nn)2!4(k
x
c)2

, n"odd

!4jnn(!1)n@2 sin (k
x
c)

(nn)2 !4(k
x
c)2

, n"evenH , (47)

the equations

<
v
Z

Tv
N
pv
"2P

e
)R

v
! +

k*0

a
k
) S

k,v
) cos(i

k
t) (48)

and with the amplitudes a
k
from equation (24) the system of equations for<

n
(v"1, 2, 3,2)

+
n*1

<
n
)Cdn,v )Npv

!

C
a
Z

a
Z

Tv

+
k*0

S
k,n

)S
k,v

) cot(i
k
t )

i
k
)N

ak
D"2P

e
)
R

v
Z

Tv

. (49)

If the back volume is locally reacting with the input impedance Z
b
of equation (42), the only

boundary condition of the "rst sub-task is

p
e
(m)#p

r
(m)" +

n*1

<
n
(Z

Tn
#Z

b
) ) v

n
(m). (50)

Multiplication as before by v
n
(m) and integration immediately gives the <

n
:

<
n
"

2P
e
)R

n
(Z

Tn
#Z

b
) N

pn

. (51)

The second sub-task determines the absorbed sound power, upon assuming that the plate
velocity<(m), expanded in<

n
) v

n
(m), is a given oscillation (i.e., again without consideration of

a possible back reaction of radiation on the oscillation).
In a "rst variant of this step, one applies the product (p

e
(m)#p

r
(m)) )<*(m) for the

evaluation of the power which (p
e
(m)#p

r
(m)) feeds into the plate. So one makes the same

error twice, because (p
e
(m)#p

r
(m)) is not the true exciting pressure. One gets

P
a1
"

c

2 P
`1

~1

ReG(pe(m)#p
r
(m)) ) +

n*1

<H
n
) v

n
(m)H dm"P

e
) c +

n*1

ReM<H
n
)R

n
N, (52)

with R
n

from equation (47) and <
n

from either equation (49) or equation (51) for a bulk
reacting or locally reacting back volume respectively.

In a second variant, one takes into account the sound pressure which the plate with the
given velocity pro"le < (m) radiates. One writes p

s
for the radiated sound (< (m) is counted

positive in the direction oriented into the plate; thus the plate in fact is a sink for the energy
of p

s
). The knowledge of <(m) is not su$cient to evaluate p

s
near the plate, but its far "eld

and power can be determined. The absorbed power is given by eqution (37), the integrand of
which may be split into (p

e
(m)#p

r
(m)) )<H(m)#p

s
(m) )<H (m). The "rst term gives the power
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contribution P
a1

of equation (52); the second term is the absorbed e!ective power P
as

due
to p

s
. This can be obtained by (see, e.g., reference [2])

P
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"

c

2 P
`1

~1

ReMp
s
(m) )<H(m)N dm"

k
0
Z

0
4n P
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~k0
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1
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1
"

k
0
Z

0
4n P

n@2

~n@2
DvL (k

0
cos t)D2 dt,

(53)

where vL (k
1
) is the wave number spectrum of <(x), which follows by a Fourier transform

(¸"2c the plate width):

vL (k
1
)"P

`=

~=

<(x) ) e~+k1x dx"P
L

<(x) ) e~+ k1x dx"c P
`1

~1

<(m) ) e~+k1c >m dm,

<(x)"
1

2n P
`=

~=

vL (k
1
) ) e`+k1x dk

1
. (54)

In the present application, <(m) is the sum of terms <
n
) v

n
(m). The wave number spectrum

vL
n
(k

1
) of v

n
(m) is taken from equation (47) after multiplication with c and the substitution

k
x
Pk

1
,

vL
n
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1
)"c P
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and the contribution to the absorbed power becomes

P
as
"

k
0
Z

0
4n P

n@2

~n@2 K +n*1

<
n
) vL

n
(k

0
cost) K

2
dt. (56)

The integral must be evaluated numerically. One cannot see in advance whether this
correction to equation (52) is important or not.

The question as to why the scattered "eld in the second sub-task is determined in the far
"eld is legitimate. (The reasons are the facts that the angular far"eld distribution is
proportional to the Fourier transform of the velocity < (m) of the plate in a ba%e wall, and
that the radiated power can be evaluated from that distribution). One can next try a third
variant of the second sub-task which somehow lies between the two previous variants. The
"rst variant neglects the scattered "eld in the absorbed intensity (p

e
(m)#p

r
(m)) )<*(m); the

second variant assumes a scattered "eld p
s
and takes into account the fact that the plate is

placed in a ba%e wall; the third variant completes the absorbed intensity to
(p

e
(m)#p

r
(m)#p

s
(m)) )<*(m), but does not worry about possible scattering at the border

lines between the plate and ba%e wall.
One knows that v

sy
(m)"<(m)"+<

n
) v

n
(m) at the plate surface. The scattered "eld is

expanded in plate modes:

p
s
(x, y)" +

n*1

d
n
) v

n
(x) ) f

n
(y). (57)

A plausible form for f
n
(y) representing outgoing waves is f

n
(y)"exp( je

n
y); the terms satisfy

the wave equation and Sommerfeld's condition if (e
n
c)2"(k

0
c)2!c2

n
; ImMe

n
N)0. From

v
sy

(m)"<(m) one gets

d
n
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0
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n
) Z

0
<
n
. (58)
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The absorbed power is

P
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c
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ReG(pe(m)#p
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(m)H dm, (59)

with P
a1

from equation (52), and the correction term

P
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"

!c

2Z
0

+
n*1

ReG
k
0

e
n
H )Npn

) DZ
0
<
n
D2. (60)

A very simple approximation, serving more for orientation than as approximation, is to
assume the plate to be in"nitely wide (¸PR). Then, the absorption coe$cient a(H) follows
from the re#ection factor R as a (H)"1!DRD2 with

R"

(Z
T
#Z

b
) ) cos H!Z

0
(Z

T
#Z

b
) ) cos H#Z

0

, (61)

where Z
T

is the plate partition impedance from equation (16b) and Z
b

is the input
impedance of the back volume, which is given by equation (42) for a locally reacting volume,
and by

Z
b

Z
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an

Z
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"Z

a
/Z

0
,

C
an

cos h
1
"JC2

an
#sin2 H (62)

for a bulk reacting volume.

8. NUMERICAL EXAMPLES

Some numerical examples will be shown (the plate still is supposed to be airtight). Curves
of a (H) over the frequency f will be shown "rst. Then, 3D-plots of the total sound "eld Dp/P

e
D

and of the scattered "eld Dp
s
/P

e
D will be presented at signi"cant frequencies taken

from a(H).
One can begin with a bulk reacting back volume. Some parameters are kept constant in

the examples. The plate is supposed to be a d"6 mm thick plywood panel with a bending
loss factor g"0)02 (it may include some losses at the "xation and by residual mechanical
contacts with the porous material in the volume); the other material parameters of the plate
are o

p
"700 kg/m3, f

cr
) d"20 Hz )m. If the back volume with a depth t"10 cm is "lled,

the "lling is a glass "bre material with a given #ow resistivity N"2500 Pa s/m2. The used
mode order limits are n

hi
"10 for the plate modes, k

hi
"8 for the volume modes, and

m
hi
"8 for the Mathieu functions.
Figure 3 shows the sound absorption coe$cient a (H) over the frequency f ; the angle of

sound incidence is H"453; the panel is rather wide (¸"2c) with c"0)5 m. The full line is
for the "nite panel, the dashed curve is for the in"nite panel. The comparison between both
curves shows that the "nite, supported panel has a marked low-frequency absorption (an
absorption coe$cient value above unity is regular for "nite size absorbers with a high input



Figure 3. Sound absorption coe$cient a(H) for a wide plywood panel, simply supported (full line) and of in"nite
width (dashed).
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admittance; it is a consequence of the so-called &&border e!ect''; or in other words: the
absorption cross-section is larger than the geometrical cross-section because of scattering at
the borders). At the lowest resonance with f+20 Hz the modes n"1 and m"0 are
dominant; in the second resonance at f+80 Hz the dominant plate mode is n"3.

The magnitude of the total sound "eld at f"20 Hz is shown in Figure 4(a). The plane
wave in that diagram and similar further 3D-plots comes from the side of negative x/c
values. The scattered wave p

s
produces the di!erence of Dp(x, 0)D from the value

Dp
e
(x, 0)#p

r
(x, 0)D"2 not only in the range !1"x/c"#1, but also well outside. The

magnitude of the scattered "eld contained in Figure 4(a) is shown separately in Figure 4(b).
Similar "eld plots for the panel absorber of Figure 3, but now at frequency f"80 Hz are

contained in Figures 5(a) and (b). The "eld plot of DpD is jagged in the standing wave
minimum, because the "eld was sampled along elliptic-hyperbolic co-ordinate lines.
According to the now dominant plate mode n"3 the "eld pattern at y"0 shows more
maxima and minima.

The next two diagrams, Figures 6(a) and 6(b) with a(H) for H"453 and the same
absorber as above, except the panel width has changed to ¸"2c"0)5 m and ¸"0)4 m,
respectively, illustrate that the achieved absorption is a matter of tuning of the parameters.
This is not surprising, because the panel absorber has a number of possible resonance
mechanisms: not only has the plate a number of resonances, but also the back volume (in its
depth, with increase of the absorption, and its width, reducing the absorption), and
coincidence of the panel vibration pattern <(x) with the trace pattern of the incident wave
also acts like a resonance.

Figure 7 shows the total sound pressure magnitude for the absorber of Figure 6(b) in the
resonance at f"50 Hz. A comparison with similar patterns for other parameters shows
that the sound pressure pro"le also may seriously change with relatively small variations of
the parameters.

In the next examples, the back volume is locally reacting. First, one considers the
plywood panel with c"0)5 m, and the back volume with depth t"0)15 m "lled with glass
"bre material (N"2500 Pa s/m2), which is supposed to be made locally reacting by thin
partition walls. Figure 8 shows the absorption coe$cients a (H) both for the "nite panel
(full line) and for the in"nite panel (dashed).



Figure 4. (a) Magnitude of the sound "eld at f"20 Hz of Figure 3; (b) magnitude of the scattered "eld at
f"20 Hz of Figure 3.
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Figure 5. (a) Magnitude of the sound "eld at f"80 Hz of Figure 3; (b) magnitude of the scattered "eld at
f"80 Hz of Figure 3.
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Figure 6. (a) Sound absorption coe$cient a(H) for a plywood panel absorber as in Figure 3, but with
c"0)25 m; simply supported (full line) and of in"nite width (dashed); (b) as (a), but with c"0)20 m.
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The magnitude of the total "eld at f"80 Hz for the panel absorber of Figure 8 is shown
in Figure 9(a); of the scattered "eld in Figure 9(b). In the maximum at f+80 Hz of
Figure 8, the plate mode n"2 and the Mathieu function m"2 are clearly dominant (but
are not the only existing modes).

Next, one can consider approximations for a (H) with bulk reacting back volumes.
Approximation &&no. 1'' uses equation (52), approximation &&no. 2'' applies the correction
term of equation (56), approximation &&no. 3'' comes with the correction term from equation
(60), and "nally the approximation of the in"nite plate evaluates a (H)"1!DRD2 with
R from the equations (61), (62). The curves for the di!erent approximations are
distinguished by di!erent dashing; &&no. 1'' begins with a full line, and for increasing
numbers, the dashes become shorter and shorter.

The example in Figure 10 belongs to the plywood panel with c"0)25 m and sound
incidence under H"453 (see above for other parameters). It shows curves of a (H) over
frequency for the di!erent approximations; it should be compared with Figure 6(a) from the
modal analysis. According to Figure 10, the three approximations described in section 7 are
about equivalent in the frame of agreement with the results from the modal analysis; that
agreement is satisfying in the shown example, except in the resonance.



Figure 7. Magnitude of the sound "eld at f"50 Hz of Figure 6(b).

Figure 8. Absorption coe$cient a (H) for a plywood panel with c"0)5 m; for H"453. The back volume is
locally reacting (full for "nite panel, dashed for in"nite panel).
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9. ABSORBER WITH A POROUS PANEL

Panel absorbers as described above often are applied in room acoustics with some
perforation of the panel. To make the perforation tractable in the analysis, it is supposed



Figure 9. (a) Magnitude of the sound "eld at f"80 Hz of Figure 8 for a panel absorber with c"0)5 m and
locally reacting back volume; (b) magnitude of the scattered "eld at f"80 Hz of Figure 8.
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Figure 10. Approximations for a(H) with a plywood panel, c"0)25 m, under sound incidence with H"453;
compare with Figure 6(a). Approximation no.1: full line; approximation no.2: long dash; approximation no.3:
medium dash in"nite plate: short dash.
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that a &&micro-structured'' perforation is applied. This means that the diameter of the
perforations and their distances are small compared with both the sound wavelength and
the panel width. One further supposes a homogeneous distribution of the perforation over
the panel (possibly except narrow border areas). In principle, a strip-wise perforation could
be treated similarly (because one makes a full mode analysis); however the coupling
coe$cients would become integrals which would need numerical integration. The porosity
of the panel is denoted by p.

One "rst has to "x how the acoustic qualities of the perforation and the perforated panel
have to be de"ned. The perforation changes the mechanical parameters, e!ective plate
material density o

p
and bending modulus B of the plate:

o
p
Po

p
(1!p), BPB ) (1!Jp), f

cr
dPf

cr
d S

1!p

1!Jp
. (63)

The indicated change in B is for square holes in a square array; it considers approximately
the reduction of the solid plate material between the holes; more sophisticated relations can
be derived for this and other geometries. The symbol Z

T
is used here for the partition

impedance of an equivalent tight plate, evaluated with these parameters and de"ned by
Dp"Z

T
) v

p
, where v

p
is the velocity of this tight panel. The pores are characterized with an

impedance Z
r
"Z@

r
#j Z@@

r
determined by Dp"Z

r
) v

r
, where Dp is the pressure di!erence

driving the average velocity v
r

through the perforated plate at rest. Preferably, one
determines Z@

r
experimentally (because the technical roughness of hole walls and the e!ect of

rounding of the hole corners are di$cult to describe analytically; an exception could be
straight, very "ne holes for which the real part Z@

r
can also be determined precisely from the

theory of capillaries), and the imaginary part ZA
r

by evaluation from

ZA
r

Z
0

"

k
0
a

p A
d

a
#

Dl
e

a
#

Dl
i

a B , (64)

where a is any representative hole dimension (usually its radius), and Dl
e
, Dl

i
are the

exterior and interior end corrections respectively. One "nds in reference [7] a number of
end corrections for di!erent hole shapes and arrays, where the important distinction is



Figure 11. An element of the perforated panel.

Figure 12. Equivalent network of the perforated panel.
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made for the interior end correction whether the interior ori"ce ends in air or on a porous
material. The reactance ZA

r
can generally be neglected for very narrow holes (and p not too

small) or for pP1, or if the hole nearly occupies the whole area of an array element.
Realizations of panel absorbers with interesting qualities can be constructed if Z

r
is realized

(in total or in part) by a thin resistive sheet (e.g., a "ne wire mesh) on one side of the panel
(usually the interior side).

The assumption of the micro structure of the perforation implies that the sound pressure
distributions along the panel surfaces do not have signi"cant ripples corresponding to the
perforation pattern. The formulations of the component "elds therefore remain as in
section 2. For the determination of the unknown amplitudes a

k
, D

m
, <

n
one needs three

boundary conditions as in equation (15), but now modi"ed for the parallel volume #ow
through the panel and the pores.

The sketch in Figure 11 indicates, in a representative area element S, the distribution of
the velocities on the plate and in the holes. The average velocity is

v"(1!p) )<#p ) v
h
"(1!p) )<#v

r
"(1!p) )<#Dp/Z

r
. (65)

The sketch in Figure 12 shows the equivalent network for the perforated panel.
The e!ective impedance is

Z
eff

"

Z
r
)Z

T
/(1!p)

Z
r
)Z

T
#(1!p)

(66)
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and the "rst boundary condition becomes

Dp"Z
eff

) v"
Z

r
)Z

T
/(1!p)

Z
r
#Z

T
/(1!p)

[(1!p) )<#Dp/Z
r
], (67a)

or with a transformation, if pO1,

Dp
Z

r
Z

r
#Z

T
/(1!p)

"

Z
r
)Z

T
Z

r
#Z

T
/(1!p)

)<. (67b)

This corresponds to the boundary condition with airtight plates if one uses the e!ective
plate partition impedance

Z
Teff

"

Z
r
)Z

T
Z

r
#Z

T
/(1!p)

. (68)

From equation (67a) one "nds the expected limits

Dp &&"
p?0
Zr?=

Z
T
)<, Dp &&"

p?1
Z

r
) v

r
,

Dp &&"
Zr?=
vr?0

Z
T
)<, Dp &&"

Zr?0
vr?=

Z
r
) v

r
. (69)

In these relations, Dp"p
e
#p

r
#p

s
!p

a
.

The other boundary conditions of matching velocities become

v"(1!p) )<#Dp/Z
r
"

! G
v
sy

v
ay
H . (70)

The derivations from equations (66) to (68) tacitly contain an assumption: it is supposed
that the friction force on the plate can be neglected compared to the driving force from Dp.
This assumption is plausible if the holes of the perforation are su$ciently wide (say a few
millimetres) and the porosity is not too high. In the realization with the wire gauze at an
ori"ce, it is supposed that the gauze either does not vibrate (due to its surface mass density)
or it is not force-locking with the panel. But for large porosity values with narrow pores or
with a force locking, vibrating wire mesh, the friction exerts an additional force DF

r
on the

panel, if the relative velocity v
h
!<O0. The driving force on the panel in a section S then

becomes

DF"DF
p
#DF

r
"Z

T
)<S

p
#pZ@

r
) (v

h
!<)S

h
, (71)

or after division with the plate area S
p
,
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1!p A
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1!p A
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r
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"CZT
#Z@

r

p
1!p A

Z
T

Z
r

!pBD )<. (72)
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The expression in the last brackets replaces Z
T

in equations (66)} (70) if friction force
coupling must be taken into account.

After these preparations, one has the boundary conditions

Dp" +
n*1

Z
Teffn

)<
n
) v

n
(m), (73a)

v
sy
"(1!p) )<#Dp/Z

r
, v

ay
"(1!p) )<#Dp/Z

r
. (73b, c)

A combination of equation (73a) with equation (73b) and with equation (73c) gives

v
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" +
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<
n
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n
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(74a, b)

with (see equations (21) and (23)),

v
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Performing on both sides of equation (74a) the integral

P
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2sin 0 ) ce
.
(0 ) d0
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and application on both sides of equation (74b) of the integral
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leads to
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With Dp"p
e
#p

r
#p

s
!p

a
inserted into equation (73) and the integral

P
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(m) dm, v*1,

applied on both sides of that equation, one gets
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One inserts D
m

from equation (76a) and a
k
from equation (76b) into this equation and "nally

obtains (an overbar over impedances indicates normalization with Z
0
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(78)

This is a linear system of equations (v"1, 2, 32) for Z
0
<
n
. With the solutions, one gets the

D
m

from equation (76a) and the a
k
from equation (76b). If one compares equation (78) with

the corresponding system of equations (25) for airtight plates, one sees the transition due to
the perforation:

1

ZM
Tv
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(1!p)

ZM
Teffv

#

1

ZM
r
B . (79)
Figure 13. (a) Sound absorption coe$cient a(H) for a relatively wide, c"0)5 m, porous plywood panel with
porosity p"0)02 and a high #ow resistance Z

r
"10 )Z

0
without friction coupling; (dashed: in"nite plate); (b) as (a),

but with friction coupling; (dashed: in"nite plate).
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Similar approximations as in section 7 for a tight panel could be derived for a perforated
panel also. However, the velocity to be determined is not < (m), but p

sy
(m). These

approximations are not displayed here in detail.

10. NUMERICAL EXAMPLES WITH PERFORATED PANELS

Only the principal in#uence of a perforation shall be illustrated. Therefore, the porosity
p and the normalized #ow resistance ReMZ

r
/Z

0
N"Z@

r
/Z

0
will be entered as new

parameters; ImMZ
r
/Z

0
N (as a consequence of ori"ce end corrections) will be neglected; this

implies either narrow holes in small mutual distances, or Z@
r
is increased by an additional

resistive sheet. The e!ect of the porosity on the elastic properties of the panel will be
evaluated as described above. The other input parameters will be taken from the examples
in section 8, i.e. H"453; the plywood panel with d"6 mm; o

p
"700 kg/m3,

f
cr
d"20 Hz m; g"0)02 and a porosity p"0)2; the back volume with t"10 cm is "lled

with glass "bres with N"2500 Pa s/m2. The absorption coe$cient a(H) evaluated with the
analysis of the previous section will be compared with a (H) for an in"nite panel; it is
evaluated with equations (61) and (62) after the substitution Z

T
PZ

Teff
.

The "rst examples in Figures 13(a) and 13(b) show the in#uence of the friction coupling
with a relatively wide plate, c"0)5 m, and a rather high #ow resistance Z

r
"10 )Z

0
. The

e!ect of friction coupling is high only in a resonance (which is at about 20 Hz in Figure 13(a)
and 13(b); it is small for small Z

r
(as expected).

The next diagrams are for a similar panel absorber, except that the width is reduced to
c"0)2; the #ow resistance still is Z

r
"10 )Z

0
. Figure 14(a) is without friction coupling,

Figure 14(b) is with friction coupling.
These few examples show that it is possible to construct perforated panel absorbers with

interesting low-frequency absorption values by a proper tuning of the parameters.

11. CONCLUDING REMARKS

A rather wide variety of panel absorbers, with airtight or porous panels, and bulk or
locally reacting back volumes have been treated with a rigorous "eld analysis and with
some approximations. The high, but narrow resonance peak absorption with airtight panels
can be e!ectively broadened by suitable perforations (no optimization, whatsoever, was
intended with the shown examples). Since this type of absorber includes many possible
resonance mechanisms, it is advantageous to have a rigorous analysis available. The
computing time does not play a decisive role; the shown 3D-plots for the sound "elds
were evaluated within a few seconds; the diagrams with the absorption coe$cient
took about 1 min of computation (the times could even be reduced by some integer
factor, if the programs would be compiled; uncompiled Mathematica programs were used
above).

The presented exact analysis may seem to be rather clumsy to some readers. However,
one should not forget that one needs an exact analysis for testing more simple
approximations, and one should keep in mind that a complicated analysis is no longer an
obstacle for practical applications, in times with computers tacting with about 1 GHz, if the
analysis is suited for numerical evaluation.

The objects treated in the present paper are two-dimensional (one side of the panel much
longer than the other). The question may arise whether a similar analysis can be performed
for three-dimensional panel absorbers also (all panel sides "nite, and all borders supported).



Figure 14. (a) Sound absorption coe$cient a (H) for a panel absorber as in Figure 13(a), i.e. without friction
coupling, but with a reduced panel width c"0)2; (b) sound absorption coe$cient a (H) for a panel absorber as in
(a) but with friction coupling.
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In this context, the role of the elliptic}hyperbolic co-ordinates in the presented exact
analysis is recalled, in which the panel and the ba%e wall can occupy co-ordinate surfaces,
and in which the Helmholtz wave equation can be separated. A similar possibility in three
dimensions does not exist for rectangular panels; only circular panels could be treated
similarly in spheroidal co-ordinates (the main consequence would be the substitution of
Mathieu functions with spheroidal functions). However, one can derive similar
approximations as above for three-dimensional absorbers. The presented comparison
between the results of exact and approximate solutions in two dimensions suggests that
approximations in three dimensions would be acceptable, except in narrow resonances.
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